associative lookup - definitie. Wat is associative lookup
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is associative lookup - definitie

C++ BEHAVIOR
Koenig Lookup; Argument dependent lookup; Koenig lookup; Argument dependent name lookup; Argument-dependent lookup

Argument-dependent name lookup         
In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor.
Associative algebra         
ALGEBRA OVER A RING SUCH THAT MULTIPLICATION IS ASSOCIATIVE
Linear associative algebra; Abelian algebra; R-algebra; Associative Algebra; Associative algebras; Associative R-algebra; Commutative R-algebra; Commutative algebra (structure); Unital associative algebra; Draft:Associative algebra; Bidimension of an associative algebra; Wedderburn principal theorem; Enveloping algebra of an associative algebra
In mathematics, an associative algebra A is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K.
Associative property         
  • The addition of real numbers is associative.
PROPERTY OF BINARY OPERATIONS ALLOWING SEQUENCES OF OPERATIONS TO BE REGROUPED WITHOUT CHANGING THEIR VALUE
Associative; Associative (algebra); Associative law; Left associative operator; Associative operation; Associative Property (mathematics); Associative Property; Nonassociative; Associative multiplication; Associative Law; Ascociative; Association (mathematics); Associativty; Non-associativity; Associativity; Generalized associative law; Non-associative; Antiassociative algebra

In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations:

Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, it can be said that "addition and multiplication of real numbers are associative operations".

Associativity is not the same as commutativity, which addresses whether the order of two operands affects the result. For example, the order does not matter in the multiplication of real numbers, that is, a × b = b × a, so we say that the multiplication of real numbers is a commutative operation. However, operations such as function composition and matrix multiplication are associative, but (generally) not commutative.

Associative operations are abundant in mathematics; in fact, many algebraic structures (such as semigroups and categories) explicitly require their binary operations to be associative.

However, many important and interesting operations are non-associative; some examples include subtraction, exponentiation, and the vector cross product. In contrast to the theoretical properties of real numbers, the addition of floating point numbers in computer science is not associative, and the choice of how to associate an expression can have a significant effect on rounding error.

Wikipedia

Argument-dependent name lookup

In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor.

During argument-dependent lookup, other namespaces not considered during normal lookup may be searched where the set of namespaces to be searched depends on the types of the function arguments. Specifically, the set of declarations discovered during the ADL process, and considered for resolution of the function name, is the union of the declarations found by normal lookup with the declarations found by looking in the set of namespaces associated with the types of the function arguments.